Software: Apache/2.2.22 (Debian). PHP/5.6.36 uname -a: Linux h05.hvosting.ua 4.9.110-amd64 #3 SMP Sun Nov 4 16:27:09 UTC 2018 x86_64 uid=1389(h33678) gid=1099(h33678) groups=1099(h33678),502(mgrsecure) Safe-mode: OFF (not secure) /usr/share/doc/postgresql-doc-9.1/html/ drwxr-xr-x |
Viewing file: Select action/file-type:
52.4. Index Locking ConsiderationsIndex access methods must handle concurrent updates of the index by multiple processes. The core PostgreSQL system obtains AccessShareLock on the index during an index scan, and RowExclusiveLock when updating the index (including plain VACUUM). Since these lock types do not conflict, the access method is responsible for handling any fine-grained locking it might need. An exclusive lock on the index as a whole will be taken only during index creation, destruction, or REINDEX. Building an index type that supports concurrent updates usually requires extensive and subtle analysis of the required behavior. For the b-tree and hash index types, you can read about the design decisions involved in src/backend/access/nbtree/README and src/backend/access/hash/README. Aside from the index's own internal consistency requirements, concurrent updates create issues about consistency between the parent table (the heap) and the index. Because PostgreSQL separates accesses and updates of the heap from those of the index, there are windows in which the index might be inconsistent with the heap. We handle this problem with the following rules:
Without the third rule, it is possible for an index reader to
see an index entry just before it is removed by VACUUM, and
then to arrive at the corresponding heap entry after that was removed by
VACUUM.
This creates no serious problems if that item
number is still unused when the reader reaches it, since an empty
item slot will be ignored by This solution requires that index scans be "synchronous": we have to fetch each heap tuple immediately after scanning the corresponding index entry. This is expensive for a number of reasons. An "asynchronous" scan in which we collect many TIDs from the index, and only visit the heap tuples sometime later, requires much less index locking overhead and can allow a more efficient heap access pattern. Per the above analysis, we must use the synchronous approach for non-MVCC-compliant snapshots, but an asynchronous scan is workable for a query using an MVCC snapshot. In an When the ampredlocks flag is not set, any scan using that index access method within a serializable transaction will acquire a non-blocking predicate lock on the full index. This will generate a read-write conflict with the insert of any tuple into that index by a concurrent serializable transaction. If certain patterns of read-write conflicts are detected among a set of concurrent serializable transactions, one of those transactions may be canceled to protect data integrity. When the flag is set, it indicates that the index access method implements finer-grained predicate locking, which will tend to reduce the frequency of such transaction cancellations. |
:: Command execute :: | |
--[ c99shell v. 2.0 [PHP 7 Update] [25.02.2019] maintained by PinoyWH1Z | C99Shell Github | Generation time: 0.0398 ]-- |